IL-10 from CD4+CD25−Foxp3−CD127− Adaptive Regulatory T Cells Modulates Parasite Clearance and Pathology during Malaria Infection
نویسندگان
چکیده
The outcome of malaria infection is determined, in part, by the balance of pro-inflammatory and regulatory immune responses. Failure to develop an effective pro-inflammatory response can lead to unrestricted parasite replication, whilst failure to regulate this response leads to the development of severe immunopathology. IL-10 and TGF-beta are known to be important components of the regulatory response, but the cellular source of these cytokines is still unknown. Here we have examined the role of natural and adaptive regulatory T cells in the control of malaria infection and find that classical CD4+CD25(hi) (and Foxp3+) regulatory T cells do not significantly influence the outcome of infections with the lethal (17XL) strain of Plasmodium yoelii (PyL). In contrast, we find that adaptive IL-10-producing, CD4+ T cells (which are CD25-, Foxp3-, and CD127- and do not produce Th1, Th2, or Th17 associated cytokines) that are generated during both PyL and non-lethal P. yoelii 17X (PyNL) infections are able to down-regulate pro-inflammatory responses and impede parasite clearance. In summary, we have identified a population of induced Foxp3- regulatory (Tr1) T cells, characterised by production of IL-10 and down regulation of IL-7Ralpha, that modulates the inflammatory response to malaria.
منابع مشابه
Plasmodium falciparum–Mediated Induction of Human CD25hiFoxp3hi CD4 T Cells Is Independent of Direct TCR Stimulation and Requires IL-2, IL-10 and TGFβ
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) regulate disease-associated immunity and excessive inflammatory responses, and numbers of CD4(+)CD25(+)Foxp3(+) Tregs are increased during malaria infection. The mechanisms governing their generation, however, remain to be elucidated. In this study we investigated the role of commonly accepted factors for Foxp3 induction, TCR stimulation and cyto...
متن کاملCD4+ Natural Regulatory T Cells Prevent Experimental Cerebral Malaria via CTLA-4 When Expanded In Vivo
Studies in malaria patients indicate that higher frequencies of peripheral blood CD4(+) Foxp3(+) CD25(+) regulatory T (Treg) cells correlate with increased blood parasitemia. This observation implies that Treg cells impair pathogen clearance and thus may be detrimental to the host during infection. In C57BL/6 mice infected with Plasmodium berghei ANKA, depletion of Foxp3(+) cells did not improv...
متن کاملAltered Suppressor Function of Regulatory T Cells in Type 1 Diabetes
Background: Type 1 diabetes (T1D) is a T cell mediated autoimmune disease targeting the insulin-producing β cells within pancreatic islets. Autoimmune diseases may develop as a consequence of altered balance between regulatory (Tregs) and autoreactive T cells. Objectives: To evaluate Treg cells frequency and suppressive function in the peripheral blood of newly diagnosed T1D patients in compari...
متن کاملStrong impact of CD4+ Foxp3+ regulatory T cells and limited effect of T cell-derived IL-10 on pathogen clearance during Plasmodium yoelii infection.
It is well established that CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) play a crucial role in the course of different infectious diseases. However, contradictory results have been published regarding to malaria infection. In this study, we report that specific ablation of Foxp3(+) Tregs in Plasmodium yoelii-infected DEREG-BALB/c mice leads to an increase in T cell activation accompanied b...
متن کاملPlasmodium vivax: Induction of CD4+CD25+FoxP3+ Regulatory T Cells during Infection Are Directly Associated with Level of Circulating Parasites
Circulation CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) have been associated with the delicate balancing between control of overwhelming acute malaria infection and prevention of immune pathology due to disproportionate inflammatory responses to erythrocytic stage of the parasite. While the role of Tregs has been well-documented in murine models and P. falciparum infection, the phenotype a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Pathogens
دوره 4 شماره
صفحات -
تاریخ انتشار 2008